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Abstract

This paper deals with the numerical simulation of flows of stratified fluids through channels with irregular geometry.

Channel cross-sections are supposed to be symmetric but not necessarily rectangular. The fluid is supposed to be

composed of two shallow layers of immiscible fluids of constant densities, and the flow is assumed to be one-dimen-

sional. Therefore, the equations to be solved are a coupled system composed of two Shallow Water models with source

terms involving depth and breadth functions. Extensions of the Q-schemes of van Leer and Roe are proposed where a

suitable treatment of the coupling and source terms is performed by adapting the techniques developed in [J. Comput.

Phys. 148 (1999) 497; Comput. Fluids 29(8) (2000) 17; Math. Model. Numer. Anal. 35(1) (2001) 107]. An enhanced

consistency condition, the so-called C-property, introduced in [Comput. Fluids 23(8) (1994) 1049] is extended to this

case and a general result providing sufficient conditions to ensure this property is shown. Then, some numerical tests to

validate the resulting schemes are presented. First we verify that, in practice, the numerical schemes satisfy the C-

property, even for extremely irregular channels. Then, in order to validate the schemes, we compare some approximate

steady solutions obtained with the generalized Q-scheme of Van Leer with those obtained by using the asymptotic

techniques developed by Armi and Farmer for channels with simplified geometries. Finally we apply the numerical

scheme to the simulation of the flow through the Strait of Gibraltar. Real bathymetric and coast-line data are con-

sidered to include in the model the main features of the abrupt geometry of this natural strait connecting the Atlantic

Ocean and the Mediterranean Sea. A steady-state solution is obtained from lock-exchange initial conditions. This

solution is then used as initial condition to simulate the main semidiurnal and diurnal tidal waves in the Strait of

Gibraltar through the imposition of suitable boundary conditions obtained from observed tidal data. Comparisons

between numerical results and observed data are also presented.
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1. Introduction

This paper is concerned with the discretization by means of Approximate Riemann Solvers of a P.D.E.
system modelling the flow of a stratified fluid along an open channel. The channel is supposed to have a

straight axis and to be symmetric with regard to a vertical plane passing through its axis, being channel

cross-sections of arbitrary shape. The fluid is assumed to be composed of two shallow layers of immiscible

inviscid fluids of constant density. Moreover, we assume that the flow is one dimensional, i.e., at every layer

the velocities are uniform over the cross-section and the thickness only depend on the coordinate related to

the axis and on time.

This work is a stage of a more general project whose final goal is to obtain a numerical model well

suited to study geophysical flows of stratified fluids. This kind of flows frequently appears in appli-
cations, such as in estuarine systems, marine density flows, etc. This is the situation, for instance,

occurring in the Strait of Gibraltar, where surface water from the Atlantic inflows over saltier west-

ward-flowing Mediterranean water. In this general project, we consider a range of models in increasing

order of complexity. It is clear that, in order to obtain realistic simulations of flow exchanges through

natural narrows, the final model has to include Coriolis effects, friction, mixing between layer, atmo-

spheric forcing, etc. Moreover, possibly a multi-layer formulation would eventually be required to

obtain a more accurate representation of water stratification in some particular cases. Nevertheless,

two-layer models can capture some of the most relevant features of this kind of flows and they have
frequently been used to study exchange flows through channels connecting two basins with different

hydrological characteristics, as it is the case of Gibraltar Narrows (see, for instance, [1,2,9,13,14,20], . . .)
At the present stage of our project, we consider this kind of models for channels with irregular

geometry.

The computation of Shallow Water systems presents some well known difficulties. When the flow is

composed of one single layer and the channel has a constant rectangular cross-section, the equations to be

solved can be written as a system of conservation laws and standard Approximate Riemann Solvers can be

used. When bed elevations or breadth variations are also considered, the equations have the form of a
system of conservation laws with source terms or balance law. In this case, standard methods can fail in

approximating steady or nearly steady flows. In [4,25] the authors have shown that methods based on

Approximate Riemann Solvers and upwinding of the source terms suitably solve these difficulties. When the

flow is composed of two layers, a new difficulty appears related to the coupling terms, which have the form

of nonconservative products. In [7] the numerical schemes introduced in [4,25], have been generalized to the

system modelling a two-layer flow in a channel with rectangular cross-sections and constant breadth. The

aim of this paper is to extend this scheme to the more general situation of channels with irregular geometry

and not necessarily rectangular cross-sections.
Thus, the outline of this paper is as follows: In Section 2 model equations are presented. In [8] a system

of P.D.E. modelling the flows considered here was deduced, but only the particular case corresponding to a

channel with rectangular cross-sections was discretized. In that case, the integral expressions related to

the pressure disappear and its treatment becomes simpler. Here, we consider the general case, which is

formulated under the form of two coupled systems of conservation laws with source terms, in the sense

introduced in [7].

Section 3 is devoted to the construction of the numerical scheme by generalizing the techniques devel-

oped in [4,11,21,25,26], for Shallow Water Equations, and those developed in [7,8] for two-layer flows
through channels with rectangular cross-sections. The numerical scheme is based on the use of a generalized

Q-scheme to discretize the flux terms and an upwinding technique to discretize the source terms. Q-schemes

are a family of upwind schemes based on Approximate Riemann Solvers, which are written in flux dif-

ference form and whose numerical fluxes are the sum of a centered approximation of the flux function and

an upwind term (see [4,5,22–25]). This upwind term is written by means of a viscosity matrix Q. In the
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particular case of the Q-schemes of Roe and Van Leer considered here, this matrix Q is equal to the ab-

solute value of the matrix of the system evaluated at an intermediate state.

In [4] an enhanced consistency condition called conservation property or C-property was introduced.
Numerical schemes satisfying this property can correctly approach steady or nearly steady solutions. In

Section 4 we extend the definition of this property to numerical schemes solving the system of

equations considered here, and we prove a result giving sufficient conditions for this property to be

satisfied. As a corollary, we verify that the Q-schemes of Roe and Van Leer satisfy the conservation

property.

In Section 5 we present some numerical experiments. The purpose of these experiments is twofold: On

the one hand, to validate the numerical schemes; on the other hand, to decide whether or not this approach

is useful for study the exchange flow through the Strait of Gibraltar. Concerning the first purpose, we begin
by showing an experiment designed to verify if the C-property is satisfied in practice, even for very irregular

geometries. The next two experiments are devoted to test model performance. To do so, we consider

channels with rectangular cross-sections and a simple geometry characterized by the presence of a con-

traction, and the combination of a sill and a contraction. The proposed numerical schemes are applied to

these channels in order to obtain stationary solutions that are compared against some steady solutions

deduced by using the asymptotic technique developed by Armi and Farmer in [1,2]. Finally, to achieve our

objective, we consider a channel approaching the real geometry of the Strait of Gibraltar. This is done by

constructing from realistic data a symmetric channel which is ‘‘equivalent’’ to the Strait in a sense to be
specified. Once this ‘‘equivalent channel’’ is constructed, the model is applied to obtain a steady-state so-

lution as the result of the evolution of the system from lock-exchange initial conditions. Then, the main

semidiurnal and diurnal tidal waves in the Strait of Gibraltar are simulated. This is done by taking the

steady-state solution of the previous experiment as initial condition and imposing the effect of tides through

the boundary conditions at the open boundaries. The boundary conditions are constructed from tidal data

obtained from [10]. The numerical results are validated against the observed data provided by the

same authors and also compared with the synopsis of the essential elements of the time-dependent response

of the flow in the Strait of Gibraltar made by Armi and Farmer [3] from observed data collected in April
1986.

Finally, Section 6 is devoted to drawing some concluding remarks and pointing out future lines of

research.
2. Governing equations

In [8] the general equations governing the one-dimensional flow of two shallow layers of immiscible
fluids along a straight channel with symmetric cross-sections of arbitrary shape were deduced. In this

section, and for the sake of completeness, a sketch of the deduction is given but we address the reader to the

former reference for further details. Next the system of equations is written under the form of two coupled

systems of conservation laws with source terms in the sense introduced in [7].

Let us first introduce some notation. In general, index 1 makes reference to the upper layer and index 2

to the lower one. The coordinate x refers to the axis of the channel; y is the horizontal coordinate normal to

the axis; z, the vertical coordinate; and t, the time; g is the gravity; qi is the density of the ith layer (q1 < q2),

and r ¼ q1=q2, their ratio. Variables bðxÞ and rðx; zÞ are, respectively, bottom and breadth functions, i.e.,
channel bottom is defined by the surface of equation z ¼ bðxÞ and channel walls by the equations:

y ¼ �ð1=2Þrðx; zÞ. The variables Aiðx; tÞ and hiðx; tÞ represent the wetted cross-section and the thickness of

the ith layer at the section of coordinate x at time t (see Fig. 1(b)), respectively. Therefore Ai and hi, i ¼ 1; 2
are related through the equations:



Fig. 1. Notations for a (a) control volume and (b) channel cross-sections.
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A1 ¼
Z bðxÞþh1þh2

bðxÞþh2

rðx; zÞdz; ð2:1Þ
A2 ¼
Z bðxÞþh2

bðxÞ
rðx; zÞdz: ð2:2Þ

Finally, viðx; tÞ and Qiðx; tÞ ¼ viðx; tÞAiðx; tÞ represent the velocity and the discharge of the ith layer.

Next, we consider a control volume of fluid R which is delimited at time t by two arbitrary cross-sections

of coordinates x ¼ x1, x ¼ x2 (x1 < x2) (see Fig. 1(a)). R can be decomposed into two volumes, R1, R2 each

of them corresponding to one layer of fluid. We denote by Ci
1, C

i
2, i ¼ 1; 2 the portion of the boundary of Ri

corresponding to the cross-sections x ¼ x1 and x ¼ x2, respectively, and Ci
w, i ¼ 1; 2 the boundaries defined

by the walls. Finally Cs, Cint, and Cb denote, respectively, the portion of the free surface, interface, and

bottom surface between sections x ¼ x1 and x ¼ x2 (see Fig. 1(a)).
The mass conservation law for the ith layer can now be expressed under integral form as follows:

d

dt

Z
Ri

qi dV ¼ qiQiðx1; tÞ � qiQiðx2; tÞ;

or, equivalently:Z x2

x1

qi
oAi

ot
ðx; tÞdx ¼

Z x2

x1

qi
oQi

ox
ðx; tÞdx:

Next, the first component of the momentum conservation law for the ith layer is expressed also under
integral form:

d

dt

Z
Ri

qivi dV ¼ qiviðx1; tÞQiðx1; tÞ � qiviðx2; tÞQiðx2; tÞ �
Z
oRi

pin1 dc;
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or

d

dt

Z x2

x1

qiQiðx; tÞdx ¼ �
Z x2

x1

qi
o

ox
Q2

i

Ai
ðx; tÞdx�

Z
oRi

pin1 dc:

In this equation, n1 represents the first component of the outward normal unit vector and pi is the pressure
for the ith layer, which is assumed to be hydrostatic:

p1ðx; zÞ ¼ gq1 bðxÞð þ h1ðx; tÞ þ h2ðx; tÞ � zÞ for bðxÞ þ h2ðx; tÞ6 z6 bðxÞ þ h1ðx; tÞ þ h2ðx; tÞ;
p2ðx; zÞ ¼ gq1h1ðx; tÞ þ gq2 bðxÞð þ h2ðx; tÞ � zÞ for bðxÞ6 z6 bðxÞ þ h2ðx; tÞ:

Observe that only pressure forces are taken into account as the fluid is supposed to be inviscid. Never-

theless, vertical viscous effects can be easily included into the model by adding parameterizations of the

friction forces due to the wind, walls, bottom or friction between layers. In this case, the corresponding
source terms appearing in the equations are treated in the same way as in the case of a channel with

rectangular cross-sections studied in [7]. Therefore, in order to avoid an excess of notation, we will not

include these terms here. Finally notice that the atmospherical pressure has also assumed to be constant and

it is set to zero.

The pressure terms for the first layer are as follows:Z
C1
1

p1n1 ¼ �gq1I1;1ðx1; tÞ;
Z
C1
2

p1n1 ¼ gq1I1;1ðx2; tÞ;
Z
C1
w

p1n1 ¼ gq1

Z x2

x1

I2;1ðx; tÞdx;
Z
Cs

p1n1 ¼ 0;
Z
Cint

p1n1 ¼ �gq1

Z x2

x1

h1rðx; bþ h2Þ
o

ox
ðbþ h2Þdx;

where

I1;1ðx; tÞ ¼
Z bðxÞþh1ðx;tÞþh2ðx;tÞ

bðxÞþh2ðx;tÞ
bðxÞ½ þ h1ðx; tÞ þ h2ðx; tÞ � z�rðx; zÞdz; ð2:3Þ
I2;1ðx; tÞ ¼
Z bþh1ðx;tÞþh2ðx;tÞ

bðxÞþh2ðx;tÞ
bðxÞ½ þ h1ðx; tÞ þ h2ðx; tÞ � z� or

ox
ðx; zÞdz: ð2:4Þ

For the second layer, we have:Z
2

p2n1 ¼ �gq1h1ðx1; tÞA2ðx1; tÞ � gq2I1;2ðx1; tÞ;

C
1



M.J. Castro et al. / Journal of Computational Physics 195 (2004) 202–235 207
Z
C2
2

p2n1 ¼ gq1h1ðx2; tÞA2ðx2; tÞ þ gq2I1;2ðx2; tÞ;

Z
C2
w

p2n1 ¼ gq1

Z x2

x1

h1ðx; tÞI3;2ðx; tÞdxþ gq2

Z x2

x1

I2;2ðx; tÞdx;

Z
Cb

p2n1 ¼ �g
Z x2

x1

q1h1ðx; tÞð þ q2h2ðx; tÞÞrðx; bÞ
db
dx

;

Z
Cint

p2n1 ¼ gq1

Z x2

x1

h1rðx; bþ h2Þ
o

ox
ðbþ h2Þdx;

where

I1;2ðx; tÞ ¼
Z bðxÞþh2ðx;tÞ

bðxÞ
bðxÞð þ h2ðx; tÞ � zÞrðx; zÞdz; ð2:5Þ

I2;2ðx; tÞ ¼
Z bðxÞþh2ðx;tÞ

bðxÞ
bðxÞð þ h2ðx; tÞ � zÞ or

ox
ðx; zÞdz; ð2:6Þ

I3;2ðx; tÞ ¼
Z bðxÞþh2ðx;tÞ

bðxÞ

or
ox

ðx; zÞdz: ð2:7Þ

The resulting equations can be written in differential form as:

oA1

ot
þ oQ1

ox
¼ 0; ð2:8Þ

oQ1

ot
þ o

ox
Q2

1

A1

�
þ gI1;1

�
¼ gI2;1 � gh1rðx; bþ h2Þ

o

ox
ðbþ h2Þ; ð2:9Þ

oA2

ot
þ oQ2

ox
¼ 0; ð2:10Þ

oQ2

ot
þ o

ox
Q2

2

A2

�
þ gI1;2

�
¼ � rgh1

oA2

ox
� grA2

oh1
ox

þ rgh1I3;2 þ gI2;2

� g rh1ð þ h2Þrðx; bÞ
db
dx

þ rgh1rðx; bþ h2Þ
o

ox
ðbþ h2Þ:

In the following two subsections, we rewrite the momentum equations in order to express every term as a

function of the variables Ai, Qi, i ¼ 1; 2 and their derivatives.
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2.1. Momentum equation for the upper layer

First the term o=oxðgI1;1Þ is written as a function of Ai and Qi, i ¼ 1; 2 by using Leibnitz�s Rule:

oI1;1x ¼
o

ox

Z bþh1þh2

bþh2

bðxÞ½ þ h1ðx; tÞ þ h2ðx; tÞ � z�rðx; zÞdz

¼
Z bþh1þh2

bþh2

o

ox
bðxÞð½ þ h1ðx; tÞ þ h2ðx; tÞ � zÞrðx; zÞ�dz� h1ðx; tÞr3ðx; tÞ

o

ox
bðxÞð þ h2ðx; tÞÞ

¼ db
dx

ðxÞ
�

þ o

ox
h1ðx; tÞð þ h2ðx; tÞÞ

�
A1ðx; tÞ þ I2;1ðx; tÞ � h1ðx; tÞr3ðx; tÞ

o

ox
bðxÞð þ h2ðx; tÞÞ; ð2:11Þ

where

r3ðx; tÞ ¼ r x; bðxÞð þ h2ðx; tÞÞ ð2:12Þ
is the channel breadth at the interface (see Fig. 1(b)).

In order to avoid an excess of notation, the dependency on x and t will be explicitly written only when
necessary to prevent any possible ambiguity.

The next step consists in writing ðo=oxÞhi, i ¼ 1; 2 in terms of Ai, Qi, i ¼ 1; 2. To do so, the equality (2.1)

is differentiated to obtain:

oA1

ox
¼ I3;1 þ r1

oh1
ox

þ r1ð � r3Þ
o

ox
ðbþ h2Þ; ð2:13Þ

where

I3;1ðx; tÞ ¼
Z bþh1ðx;tÞþh2ðx;tÞ

bðxÞþh2ðx;tÞ

or
ox

ðx; zÞdz; ð2:14Þ

and

r1ðx; tÞ ¼ r x; bðxÞð þ h2ðx; tÞ þ h1ðx; tÞÞ ð2:15Þ

is the channel breadth at the free surface (see Fig. 1(b)).

Now, from Eq. (2.13), we obtain

oh1
ox

¼ 1

r1

oA1

ox
� 1

r1

I3;1

�
þ r1ð � r3Þ

o

ox
ðbþ h2Þ

�
: ð2:16Þ

Similarly, equality (2.2) is differentiated to obtain:

oh2
ox

¼ 1

r3

oA2

ox
� 1

r3

I3;2

�
þ r3ð � rbÞ

db
dx

�
; ð2:17Þ

where

rbðxÞ ¼ r x; bðxÞð Þ ð2:18Þ

is the channel breadth at the bottom (see Fig. 1(b)).

Now, using expressions (2.11), (2.16), and (2.17), and after some calculations, the following expression

for Eq. (2.9) is obtained:

oQ1

ot
þ o

ox
Q2

1

A1

�
þ g
2r1

A2
1

�
¼ � g

r1

A1

oA2

ox
þ g

2

1

r1

� �
x

A2
1 � g

db
dx

rb

r1

A1 þ
g
r1

ðI3;1 þ I3;2ÞA1: ð2:19Þ
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For the sake of simplicity, we do not express the derivative of 1=r1 as a function of the derivatives of the

unknowns, as its explicit expression is not important for the numerical treatment of this term.

2.2. Momentum equation for the lower layer

Repeating the same procedure than the one used in the previous paragraph, the term ðoI1;2Þ=ox is de-

veloped by using the Leibnizt�s rule:

oI1;2
ox

¼ o

ox

Z bþh2

b
bðxÞ½ þ h2ðx; tÞ � z�rðx; zÞdz ¼ db

dx

�
þ oh2

ox

�
A2 þ I2;2 � h2rb

db
dx

: ð2:20Þ

Newly, the use of (2.16) and (2.17) allow us to write (2.11) under the form:

oQ2

ot
þ o

ox
Q2

2

A2

�
þ g
2r2

A2
2

�
¼ �r

g
r1

A2

oA1

ox
þ g
2

1

r2

� �
x

A2
2 � g

db
dx

rb

r2

A2 þ g
r
r1

ðI3;1
�

þ I3;2Þ þ
ð1� rÞ
r3

I3;2

�
A2;

ð2:21Þ
where

1

r2

¼ 1� r
r3

þ r
r1

; ð2:22Þ

and, again, the derivative of 1=r2 is not developed in terms of the derivative of the unknowns. Notice that

r2 has the character of a weighted harmonic mean of r1 and r3.

2.3. System of equations

Finally, the Eqs. (2.8), (2.19), (2.10), and (2.21) are written as follows:

oW

ot
þ oF

ox
ðr;WÞ ¼ Bðr;WÞ oW

ox
þ Vðr;WÞ þ Sðx; r;WÞ; ð2:23Þ

where

Wðx; tÞ ¼ A1ðx; tÞ;Q1ðx; tÞ;A2ðx; tÞ;Q2ðx; tÞ½ �T; ð2:24Þ

rðx; tÞ ¼ r1ðx; tÞ; r2ðx; tÞ; r3ðx; tÞ½ �T; ð2:25Þ

Fðr;WÞ ¼

Q1
Q2
1

A1
þ g

2r1
A2
1

Q2
Q2
2

A2
þ g

2r2
A2
2

2664
3775; ð2:26Þ

Bðr;WÞ ¼
0 0 0 0
0 0 �g A1

r1
0

0 0 0 0
�gr A2

r1
0 0 0

264
375; ð2:27Þ

Vðr;WÞ ¼

0
g
2

1
r1

� �
x
A2
1

0

g
2

1
r2

� �
x
A2
2

2666664

3777775; ð2:28Þ
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Sðx; r;WÞ ¼

0

g A1

r1

R bþh1þh2
b

or
ox dz� gA1

rb
r1

db
dx

0

�g rb
r2

db
dx A2 þ gA2

r
r1

R bþh1þh2
b

or
ox dzþ 1�r

r3

R bþh2
b

or
ox dz

� �
266664

377775: ð2:29Þ
3. Numerical scheme

In [7] a numerical scheme based on Approximate Riemann Solvers for general coupled systems of

conservation laws with source terms is developed. In this work, the former scheme is applied to the system

(2.23) in the particular case where r is constant, i.e., for channels with constant breadth rectangular cross-

sections.

Nevertheless, the general case (2.23) does not fit into the abstract framework developed in the cited work

due to the flux dependence on x via the breadth r. For the case of a single shallow water layer this difficulty
has been studied in [11]. In this section these techniques are applied to construct a numerical scheme for

(2.23).
3.1. Numerical fluxes and coupling terms

Let us consider first the following system, where the source term Sðx; r;WÞ has been dropped:

oW

ot
þ oF

ox
ðr;WÞ ¼ Bðr;WÞ oW

ox
þ Vðr;WÞ: ð3:1Þ

It is easy to verify that, in matrix form, this system reads as follows:

Wt þAðr;WÞWx ¼ 0; ð3:2Þ

where A is the 4� 4 matrix whose expression is given by:

Aðr;WÞ ¼ Jðr;WÞ � Bðr;WÞ;
with:

Jðr;WÞ ¼

0 1 0 0

� Q2
1

A2
1

þ g
r1
A1 2 Q1

A1
0 0

0 0 0 1

0 0 � Q2
2

A2
2

þ g
r2
A2 2 Q2

A2

26664
37775:

Observe that the term Vðr;WÞ vanishes when the system is expressed in the form (3.2), as

oF

ox
¼ oF

oW
Wx þ

oF

or
rx ¼ Jðr;WÞWx þ Vðr;WÞ:

The eigenvalues of A can be classified in two external and two internal eigenvalues. The external ei-

genvalues, kextj , j ¼ 1; 2 are related to the propagation speed of barotropic perturbations and the internal

ones kintj , j ¼ 1; 2 to the propagation of baroclinic perturbations. Unfortunately, analytical expressions of

the eigenvalues are not available. Nevertheless, in the case r ffi 1, a first-order approximation was given in

[19]. Attending to the nature of the internal eigenvalues, the flow is said to be subcritical if the sign of the
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internal eigenvalues differs, critical if one of them takes the value zero, otherwise the flow is called super-

critical. It can be deduced from the expression of the matrix A that critical, supercritical and subcritical

sections can be characterized by sections where G2 ¼ 1, G2 > 1, G2 < 1, respectively, where

G2 ¼ F 2
1 þ F 2

2 � ð1� rÞ r2

r3

F 2
1 F

2
2 ; ð3:3Þ

and

F 2
1 ¼ v21

g0 r2
r3

� �
A1

r1

� � ; F 2
2 ¼ v22

g0 A2

r3

� � : ð3:4Þ

In these definitions, g0 ¼ gð1� rÞ is the reduced gravity, and G and Fi, i ¼ 1; 2 are the appropriate defi-
nitions for this case of the composite Froude number and the internal Froude numbers, respectively.

The internal eigenvalues may become complex corresponding to the development of shear instabilities

(see [15] for more details on instabilities on hydraulically controlled flows). Nevertheless, in this work only

the case when the matrix A has 4 different real eigenvalues is considered, i.e., the flow is supposed to be

stable and the system hyperbolic. With the numerical scheme presented here unstable flows cannot be

simulated. To do so, friction and/or mixing has to be included in the model.

To obtain a numerical scheme for (3.1) we apply Roe�s method [17,18] as it was done in [7] for a par-

ticular case. To begin with, the space domain is decomposed into M computing cells Ii ¼ ½xi�1=2; xiþ1=2� for
i ¼ 1 toM . Although the numerical scheme is effectively thought and used for irregular meshes, for the sake

of simplicity, we assume that these cells have a constant size Dx and that xiþ1=2 ¼ iDx. That means that

xi ¼ ði� 1=2ÞDx is the center of the cell Ii. Let Dt be the time step and tn ¼ nDt. The approximation of

Wðxi; nDtÞ given by the numerical scheme will be represented by:

Wn
i ¼ An

i;1; Qn
i;1;A

n
i;2; Qn

i;2

h iT
:

The same notation is used for the approximated velocities:

uni;j ¼
Qn

i;j

An
i;j
; j ¼ 1; 2:

Once the solution has been computed at the time tn, the calculation of Wnþ1
i requires the choice of an

�intermediate state� between Wn
i and Wn

iþ1 at the intercell xiþ1=2, that is used to linearize the system. This

intermediate state will be denoted by

fWn
iþ1=2 ¼ ~An

iþ1=2;1;
~Qn
iþ1=2;1;

~An
iþ1=2;2;

~Qn
iþ1=2;2

h iT
:

~hiþ1=2;j, j ¼ 1; 2 are the thickness related to ~Aiþ1=2;j, j ¼ 1; 2 through (2.1), (2.2), and ern
iþ1=2 represents the

value of r related to ~hiþ1=2;j, j ¼ 1; 2 and xiþ1=2 through (2.12), (2.15) and (2.22). Finally, fAiþ1=2 and eBiþ1=2

will denote the value of the matrices A and B, respectively, corresponding to ern
iþ1=2 and

fWn
iþ1=2.

In the description of the numerical scheme we will use the following matrices:

Kiþ1=2 ¼
kiþ1=2;1 0

. .
.

0 k

264
375;
iþ1=2;4
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whose diagonal coefficients are the eigenvalues of fAiþ1=2. By Kiþ1=2 we denote a matrix whose columns are

eigenvectors corresponding to these eigenvalues. The following matrices will also be used:

sgnðKiþ1=2Þ ¼

sgnðkiþ1=2;1Þ 0

. .
.

0 sgnðkiþ1=2;4Þ

2664
3775; K�

iþ1=2 ¼
ðkiþ1=2;1Þ� 0

. .
.

0 ðkiþ1=2;4Þ�

2664
3775;

fA�
iþ1=2 ¼ Kiþ1=2K

�
iþ1=2K

�1
iþ1=2;

fAiþ1=2

��� ��� ¼ fAþ
iþ1=2 � fA�

iþ1=2:

Once the intermediate states are chosen, Roe�s method is applied in the usual way by solving the line-

arized Riemann Problems at each interface and integrating on the cells. The numerical scheme obtained can

be written as follows:

Wnþ1
i ¼ Wn

i þ
Dt
Dx

ðgþi�1=2 � g�iþ1=2Þ; ð3:5Þ

where

gþi�1=2 ¼ FðWn
i Þ � fAþ

i�1=2 � ðWn
i �Wn

i�1Þ;

gþiþ1=2 ¼ FðWn
i Þ þ fA�

iþ1=2 � ðWn
iþ1 �Wn

i Þ:

Let us suppose that the intermediate states chosen are:

fWn
iþ1=2 ¼ ~An

iþ1=2;1;
~Qn
iþ1=2;1;

~An
iþ1=2;2;

~Qn
iþ1=2;2

h iT
; ð3:6Þ

with

~An
iþ1=2;j ¼

An
i;j þ An

iþ1;j

2
; ~uniþ1=2;j ¼

ffiffiffiffiffiffiffi
An
i;j

p
uni;j þ

ffiffiffiffiffiffiffiffiffiffiffi
An
iþ1;j

p
uniþ1;jffiffiffiffiffiffiffi

An
i;j

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
An
iþ1;j

p ; ~Qn
iþ1=2;j ¼ ~An

iþ1=2;j~u
n
iþ1=2;j; ð3:7Þ

and the matrix fAiþ1=2 is as follows:fAiþ1=2 ¼ eJiþ1=2 � eBiþ1=2; ð3:8Þ

where

eJiþ1=2 ¼

0 1 0 0

�ð~uniþ1=2;1Þ
2 þ ð~cniþ1=2;1Þ

2
2~uniþ1=2;1 0 0

0 0 0 1

0 0 �ð~uniþ1=2;2Þ
2 þ ð~cniþ1=2;2Þ

2
2~uniþ1=2;2

2664
3775; ð3:9Þ
~cniþ1=2;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gern
iþ1=2;j

An
i;j þ An

iþ1;j

2

s
; ð3:10Þ
~rn
iþ1=2;1 ¼

rn
i;1 þ rn

iþ1;1

2
; ~rn

iþ1=2;3 ¼
rn
i;3 þ rn

iþ1;3

2
;

1

~rn
iþ1=2;2

¼ 1� r
~rn
iþ1=2;3

þ r
~rn
iþ1=2;1

: ð3:11Þ

Observe that this intermediate state corresponds to choose, for each layer, the usual Roe�s average for

one-layer shallow water systems.
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Then some simple computations show that, in this case, the propertyfAiþ1=2 � Wn
iþ1

	
�Wn

i



¼ FðWn

iþ1Þ � FðWn
i Þ � eV iþ1=2 � eBiþ1=2 Wn

iþ1

	
�Wn

i



; ð3:12Þ

is satisfied, where

eViþ1=2 ¼

0eViþ1=2;1

0eViþ1=2;2

2664
3775;
eViþ1=2;j ¼
g
2

1

riþ1;j

�
� 1eriþ1=2;j

�
ðAn

iþ1;jÞ
2 þ g

2

1eriþ1=2;j

�
� 1

ri;j

�
ðAn

i;jÞ
2
; j ¼ 1; 2: ð3:13Þ

Then scheme (3.5) writes, thanks to the verification of property (3.12) for Roe�s intermediate state (3.6)–

(3.10), under the form:

Wnþ1
i ¼ Wn

i þ
Dt
Dx

Fi�1=2

	
� Fiþ1=2



þ Dt
2Dx

eBi�1=2 � ðWn
i

�
�Wn

i�1Þ þ eBiþ1=2 � ðWn
iþ1 �Wn

i Þ
�

þ Dt
2Dx

eV i�1=2

�
þ eV iþ1=2

�
; ð3:14Þ

with

Fiþ1=2 ¼
1

2
Fðrn

i ;W
n
i Þ

	
þ Fðrn

iþ1;W
n
iþ1Þ



� 1

2
fAiþ1=2

��� ��� � ðWn
iþ1 �Wn

i Þ: ð3:15Þ

This is in fact the general writing of a Q-scheme for solving (3.1). The particular cases are defined by the

specific choice of the matrices Aiþ1=2. In this work, we only consider the Q-scheme of Roe, defined by the

choice (3.6)–(3.10) and the Q-scheme of Van Leer, where the intermediate states are defined by

fWn
iþ1=2 ¼

Wn
i þWn

iþ1

2
ð3:16Þ

and

Aiþ1=2 ¼ A ern
iþ1=2;

fWn
iþ1=2

� �
: ð3:17Þ
3.2. Source terms

It is known that, when solving shallow water systems, numerical schemes based on centered discreti-

zations can fail in approximating steady flows. In [4,25], a suitable upwinding discretization was introduced

to prevent the appearance of this difficulty. Following these authors, we propose the following numerical

scheme to solve (2.23):

Wnþ1
i ¼ Wn

i þ
Dt
Dx

Fi�1=2

	
� Fiþ1=2



þ Dt
2Dx

eBi�1=2 � ðWn
i

�
�Wn

i�1Þ þ eBiþ1=2 � ðWn
iþ1 �Wn

i Þ
�

þ Dt
2Dx

eV i�1=2

�
þ eV iþ1=2

�
þ Dt
Dx

Pþ
i�1=2

eSi�1=2

�
þ P�

iþ1=2
eSiþ1=2

�
; ð3:18Þ
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where

P�
iþ1=2 ¼ 1

2
Kiþ1=2 Id

	
� sgnðKiþ1=2Þ



K�1

iþ1=2; ð3:19Þ

and eSiþ1=2 is an approximation of the integral of the source term S at ½xi; xiþ1�. Here we propose a suitable

expression for the numerical treatment of the source terms eSiþ1=2.

Remind that the expression of the source term (2.29) is as follows:

Sðr;WÞ ¼

0

S½2�
0

S½4�

2664
3775;

with

S½2� ¼ g
A1

r1

Z bþh1þh2

b

or
ox

dz� gA1

rb

r1

db
dx

; ð3:20Þ
S½4� ¼ �g
rb

r2

db
dx

A2 þ gA2

r
r1

Z bþh1þh2

b

or
ox

dz
�

þ 1� r
r3

Z bþh2

b

or
ox

dz
�
: ð3:21Þ

The main difficulty in approximating this source term comes from the integrals appearing in its expression.

To deal with this difficulty, we first rewrite S in such a way that these integrals disappear.

First, from the definition of A1 and A2 (see (2.1) and (2.2)) and using Leibnitz�s Rule, we obtain:

o

ox
ðA1 þ A2Þ ¼

o

ox

Z bþh1þh2

b
rðx; zÞdz ¼

Z bþh1þh2

b

or
ox

dzþ db
dx

�
þ oh1

ox
þ oh2

ox

�
r1 �

db
dx

rb: ð3:22Þ

Using this equality, S½2� can be rewritten as follows:

S½2� ¼ g
A1

r1

o

ox
ðA1 þ A2Þ � gA1

o

ox
ðbþ h1 þ h2Þ: ð3:23Þ

Next, from the definition of A2 (see (2.2)) and using again Leibnitz�s Rule, we obtain

oA2

ox
¼ o

ox

Z bþh2

b
rðx; zÞdz ¼

Z bþh2

b

or
ox

dzþ db
dx

�
þ oh2

ox

�
r3 �

db
dx

rb: ð3:24Þ

Taking into account the former equality, (3.22), and the definition of r2 (2.22), S½4� can be rewritten as

follows:

S½4� ¼ gA2

1

r2

oA2

ox

�
þ r
r1

oA1

ox
� db

dx

�
þ oh2

ox

�
� r

oh1
ox

�
: ð3:25Þ

Using (3.23) and (3.25), the integral of the source term on the interval ½xi; xiþ1� is approximated by:

eSiþ1=2 ¼

0eSiþ1=2;½2�
0eSiþ1=2;½4�;

0BB@
1CCA; ð3:26Þ
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where

eSiþ1=2;½2� ¼ geAiþ1=2;1

1eriþ1=2;1

Aiþ1;1ð
�

þ Aiþ1;2 � ðAi;1 þ Ai;2ÞÞ � biþ1ð þ hiþ1;1 þ hiþ1;2 � ðbi þ hi;1 þ hi;2ÞÞ
�
;

ð3:27Þ

and

eSiþ1=2;½4� ¼ geAiþ1=2;2

1eriþ1=2;2

ðAiþ1;2

�
� Ai;2Þ þ

reriþ1=2;1

ðAiþ1;1 � Ai;1Þ

� biþ1ð þ rhiþ1;1 þ hiþ1;2 � ðbi þ rhi;1 þ hi;2ÞÞ
�
: ð3:28Þ

3.3. CFL condition and Harten regularization

In the deduction of the schemes CFL-like requirements have to be imposed (see [17]). In practice, we

propose the following condition:

max jkiþ1=2;lj j 1
�

6 l6 4; 16 i6M
� Dt
Dx

6 c;

where 0 < c6 1 is the CFL number.
In general, the numerical scheme can run with CFL numbers close to 1: restrictions on the CFL number

are only required when there are fronts separating one layer or two layer flows, as is the case in lock-ex-

change experiments (see Section 5).

Finally, in order to prevent the numerical viscosity of the Q-schemes from vanishing when any of the

eigenvalues of the matrices jfAiþ1=2j are zero, we apply Harten regularization [12].

3.4. Some remarks about the numerical implementation

The implementation of the numerical schemes introduced above presents some practical difficulties. The

first one is related to the calculation of the thickness hi, i ¼ 1; 2. More precisely, the problem consists in

given the values An
l;1 and An

l;2 of the wetted cross-sections at the cell Il how to calculate hnl;j, j ¼ 1; 2 defined

by the relationships:

An
l;1 ¼

Z blþhnl;1þhnl;2

blþhn
l;2

rðxl; zÞdz; ð3:29Þ
An
l;2 ¼

Z blþhnl;2

bl

rðxl; zÞdz; ð3:30Þ

where xl is the center of the cell and bl ¼ bðxlÞ. To solve this problem, we first construct a continuous linear

piece-wise approximation Rl of the function rðxl; �Þ as follows: Given z 2 ½bl;1Þ

RlðzÞ ¼
rðxl; bl þ Hl;jþ1Þ z�bl�Hl;j

Hl;jþ1�Hl;j
� rðxl; bl þ Hl;jÞ z�bl�Hl;jþ1

Hl;jþ1�Hl;j
; if Hl;j 6 z� bl 6Hl;jþ1;

j ¼ 0; . . . ; P � 2;
rðxl; bl þ Hl;P Þ z�bl�Hl;P�1

Hl;P�Hl;P�1
� rðxl; bl þ Hl;P�1Þ z�bl�Hl;P

Hl;P�Hl;P�1
; if Hl;P�1 6 z� bl;

8><>:
where Hl;0 ¼ 0 and fHl;1; . . . ;Hl;Pg are P values previously chosen. Then, we approximate hnl;j, j ¼ 1; 2 by the
solutions ~hj, j ¼ 1; 2 of the problems:
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An
l;1 ¼

Z blþ~h1þ~h2

blþ~h2

RlðzÞdz; ð3:31Þ
An
l;2 ¼

Z blþ~h2

bl

RlðzÞdz: ð3:32Þ

To efficiently solve this problem, we first define the values Rl;j associated to Hl;j, j ¼ 0; . . . ; P as

Rl;j ¼
Z blþHl;j

bl

RlðzÞdz; ð3:33Þ

which are easily calculated. Notice that the computation of these values has to be performed only once.

Now, ~h2 is computed using the following algorithm:

• Searching for the index jn such that Rl;jn 6An
l;2 < Rl;jnþ1 (if An

l;2 PRl;P then jn ¼ P � 1).

• Calculate ~h2 by:

~h2 ¼ Hl;jn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4RlðblþHl;jn Þ2þ8ðAn

l;2
�Rl;jn Þa

p
�2RlðblþHl;jn Þ

2a if a 6¼ 0;

Hl;jn þ
An
l;2�Rl;jn

RlðblþHjn Þ
if a ¼ 0;

8<:
where

a ¼ Rlðbl þ Hl;jnþ1Þ � Rlðbl þ Hl;jnÞ
Hl;jnþ1 � Hl;jn

:

To initialize the searching algorithm described above a first initial guess of the index must be done (in

practice jn�1 is taken) and then the search follows moving upwards or downwards. Once the value for ~h2 has
been found, ~h1 is a calculated in a similar way: The same algorithm is used, but substituting An

l;2 by

An
l;2 þ An

l;1.

Finally the approximations of r3ðxl; nDtÞ and r1ðxl; nDtÞ are given by

rn
3l
¼ Rlðbl þ ~h2Þ and rn

1l
¼ Rlðbl þ ~h2 þ ~h1Þ;

respectively.

Another difficulty that appears at the implementation stage is the approximation of the eigenvalues
and eigenvectors of the matrices Aiþ1=2. We have used Laguerre�s method for approximating the roots

of the characteristic equation detðId� kAiþ1=2Þ ¼ 0. In the case r � 1, as initial guess for the algorithm

the first order approximations provided in [19] are used. With this initial choice, in practice, Laguerre�s
methods only needs 2 or 3 iterations to converge, being the cost of the solution of these spectral

problems negligible compared with the computation of the matrices jAj, Pþ
iþ1=2, P

�
iþ1=2 appearing in the

scheme.
4. Conservation property

In [4] an enhanced consistency condition called conservation property or C-property was introduced in

order to characterize how exactly a numerical scheme approximates a steady solution representing water at

rest. In this section, this property is extended to the case under study and we analyze whether or not the

numerical schemes introduced in the previous section satisfy the extended condition.
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In the context of the present work, a steady-state solution representing water at rest is characterized by

(see Fig. 2):

Q1ðxÞ ¼ Q2ðxÞ ¼ 0; A1ðxÞ ¼
Z �h2þ�h1

�h2

rðx; zÞdz; A2ðxÞ ¼
Z �h2

bðxÞ
rðx; zÞdz; ð4:1Þ

where �h1 and �h2 are two constants such that:

�h1 > 0; �h2 P bðxÞ 8x:

The natural extension of the C-property is thus as follows:

Definition 1. It is said that a numerical scheme for solving (2.23) satisfies the C-property, if any steady-state
solution given by (4.1) is computed exactly.

The following result holds:

Theorem 1. Let us consider a numerical scheme of the form (3.18) for solving (2.23). Given any steady solution

(A1;Q1;A2;Q2) verifying (4.1), we define

�Wi ¼ A1ðxiÞ; Q1ðxiÞ; A2ðxiÞ; Q2ðxiÞ½ �T: ð4:2Þ

If, for each i, the following equalities hold

Aiþ1=2 � �Wiþ1

�
� �Wi

�
¼ Fð �Wiþ1Þ � Fð �WiÞ � eViþ1=2 � eBiþ1=2

�Wiþ1

�
� �Wi

�
; ð4:3Þ
Aiþ1=2 � �Wiþ1

�
� �Wi

�
¼ eSiþ1=2; ð4:4Þ

then the scheme satisfies the C-property.

Proof. To prove the theorem, we apply the numerical scheme to the initial condition

W0
i ¼ �Wi 8i:
Fig. 2. Longitudinal section of a solution representing water at rest.
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Observe that (4.3) is a particular case of (3.12), which is the condition satisfied when Roe�s intermediate

states have been chosen. Now this condition can be used, as it was done in Section 3.1, but going backwards

to write the first stage of the scheme as follows:

W1
i ¼ W0

i �
Dt
Dx

Aþ
i�1=2 � ðW0

i

�
�W0

i�1Þ þA�
iþ1=2 � ðW0

iþ1 �W0
i Þ
�
þ Dt
Dx

Pþ
i�1=2

eSi�1=2

�
þ P�

iþ1=2
eSiþ1=2

�
:

If we prove that, for every i, the following equalities hold:

P�
iþ1=2

eSiþ1=2 ¼ A�
iþ1=2 � ðW0

iþ1 �W0
i Þ; ð4:5Þ

then

W1
i ¼ W0

i 8i:

Now, to prove (4.5) we first need to establish the following matrix identity:

P�
iþ1=2Aiþ1=2 ¼

1

2
Kiþ1=2 Id

	
� sgnðKiþ1=2Þ



K�1

iþ1=2Aiþ1=2 ¼
1

2
Kiþ1=2 Id

	
� sgnðKiþ1=2Þ



Kiþ1=2K

�1
iþ1=2

¼ Kiþ1=2K
�
iþ1=2K

�1
iþ1=2 ¼ A�

iþ1=2:

Multiplying (4.4) by the matrix P�
iþ1=2 and using the former matrix equality, we obtain (4.5). �

Corollary 1. If a numerical scheme of the form (3.18) with source terms given by (3.26)–(3.28) is such that the

matrices Aiþ1=2 coincide with those of Roe’s method when the scheme is applied to the initial condition (4.2),

then it satisfies the C-property.

Proof. First, it is trivial to prove that (4.3) is satisfied if Roe�s intermediate states are chosen, as this

condition is a particular case of the more general property (3.12) established in Section 3.1 for Roe�s states.
On the other hand, an easy computation shows that, in the particular case of the states (4.2) the non-zero

components of (3.26) writes as follows:

eSiþ1=2;½2� ¼ geAiþ1=2;1

1eriþ1=2;1

ðAiþ1;1 þ Aiþ1;2 � ðAi;1 þ Ai;2ÞÞ;

eSiþ1=2;½4� ¼ geAiþ1=2;2

1eriþ1=2;2

ðAiþ1;2

�
� Ai;2Þ þ

reriþ1=2;1

ðAiþ1;1 � Ai;1Þ
�
;

and

fAiþ1=2 ¼

0 1 0 0
geriþ1=2;1

eAiþ1=2;1 0 geriþ1=2;1

eAiþ1=2;1 0

0 0 0 1
greriþ1=2;1

eAiþ1=2;2 0 geriþ1=2;2

eAiþ1=2;2 0

26664
37775:

From these equalities, (4.4) is trivially obtained.

As a consequence, the methods of Roe and Van Leer with numerical source terms given by (3.26)–(3.28)

satisfy the conservation property. �

Remark 1. The Theorem 1 can be easily adapted to the case of the Shallow Water Equations with source

terms.
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5. Numerical results

In this section, some experiments that illustrate the properties of the proposed numerical schemes are
presented. In all the cases, the method of Van Leer is used.
5.1. Water at rest in a channel with irregular geometry and triangular cross-sections

In this subsection, a numerical test is presented to verify how exactly the C-property is, in practice,

satisfied for a channel with very irregular geometry. To do this, we considered a channel with triangular

cross-sections and for which depth and breadth were randomly generated. Then, the scheme was applied

taking as initial condition a steady solution representing water at rest. The CFL parameter is set to 0:9 and
Dx ¼ 0:05. Figs. 3(a) and (b) show bottom topography and upper channel breadth, respectively. Figs. 3(c)

and (d) depict the free surface and the interface at the initial time and after 10 seconds of simulation.

Finally, Figs. 3(e) and (f) show the value of the discharge at each layer at initial state and after 10 seconds of

simulation, respectively. The water elevation at the free surface and at the interface is exactly computed

being zero at every time iteration. Nevertheless non-zero discharges appear, but they are of the order of the

round-off error unit and they do not grow with time. The time iteration corresponding to t ¼ 10 s. have

been plotted as example, but the solution at any other time looks exactly the same. As it can be observed in

the figures, no spurious waves appear.

5.2. Two-layer exchange flow through a channel with a contraction

The validation of numerical schemes for solving (2.23) is not a simple task, as exact solutions for this

system are not easily obtained. Nevertheless, Armi and Farmer in [1,2] introduced, in the context of the

study of exchange flows through channels, an asymptotic technique to obtain steady solutions for channels

with simplified geometries.

The goal of this section is to approximate numerically the so-called maximal solution in a channel
connecting two infinite basins with water of different densities whose ratio is r ffi 1. In this particular test

case, channel geometry is defined by a single contraction with a flat bottom and rectangular cross-sections.

The numerical solution obtained by this test will be compared against the stationary solutions provided by

Armi and Farmer. But let us first briefly recall the main aspects of the theory developed by these authors. In

their works, smooth steady-state solutions are studied. To do this, the flow of each layer is modelled by

using Bernoulli�s equation. The rigid lid approximation is assumed. The equations are first written in non-

dimensional form using some dimensionless variables Q0
i, h

0
i, r

0 that are such that r0 ¼ 1 at the contraction

and h01 þ h02 ¼ 1 everywhere (observe that, due to the hypothesis of rigid lid, the sum of the two layers
thickness is constant). On the other hand, as the steady-state mass equations reduce to oxQi ¼ 0, Q1 and Q2

(or, equivalently, Q0
1 and Q0

2) are constants. Let qr ¼ jQ1=Q2j be the ratio of the discharges. Here, only the

case qr ¼ 1 will be considered.

If the equations of the two layers are written in terms of the internal Froude numbers, Fi ¼ vi=
ffiffiffiffiffiffiffiffiffiffiffi
ðg0hiÞ

p
,

i ¼ 1; 2, and they are subtracted, the following equality is obtained:

F �2=3
2 ð1þ 1

2
F 2
2 Þ � 1

2
q2=3r F �2=3

1 F 2
1

q2=3r F �2=3
1 þ F �2=3

2

¼ DH 0: ð5:1Þ

DH 0 is a constant corresponding to the dimensionless energy difference between the two layers.

The solutions of the equations can be identified by a curve in the ðF 2
1 , F

2
2 Þ-plane of Froude numbers, this

curve is given by Eq. (5.1). These solutions haven been plotted in detail in [1]. In Fig. 4, we show the curves

corresponding to the physically feasible steady-state solutions for qr ¼ 1.



Fig. 3. C-property verification test: water at rest in an irregular channel. (a) Bottom topography (random); (b) channel breath at top

(random); (c) free surface and interface at initial state; (d) free surface and interface after 10 s of simulation; (e) discharge at each layer

at initial state; (f) discharge at each layer after 10 s of simulation.
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Fig. 4. Solutions to the Bernoulli equations in the Froude-number plane for qr ¼ 1. Each solution curve is labelled with its non-di-

mensional energy difference between the two layers.
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The details of the solution corresponding to one of these curves can be recovered by studying its in-

tersections with the curves of equation:

q2=3r F �2=3
1 þ F �2=3

2 ¼ Q0
2

r0

� ��2=3

; ð5:2Þ

which is the equality h01 þ h02 ¼ 1 expressed in terms of Fi, i ¼ 1; 2. This is done as follows: It can be proved

that, if a smooth steady-state solution has a critical section, it is necessarily located at the contraction. As
r ffi 1, the Composite Froude number can be approximated by:

G2 ffi F 2
1 þ F 2

2 :

Using this approximation, a critical section is characterized by the equation F 2
1 þ F 2

2 ¼ 1. This equation

defines a straight line in the ðF 2
1 ; F

2
2 Þ-plane, also represented in Fig. 4 (dashed line), that separates subcritical

from supercritical states. Now let us suppose that the curve corresponding to a solution intersect at a point

ðF 2
1 ; F

2
2 Þ with the dashed line. Taking into account that critical sections have to be located at the contraction

where r0 ¼ 1, the value of Q0
2 (and, consequently, of Q

0
1) corresponding to that particular solution can be

calculated by using Eq. (5.2). Once the discharges known, all the details of the solution can be easily

computed.

The maximal solution is that corresponding to the branch of the DH 0 ¼ 0:5 curve which is on the su-

percritical region, for which the discharge is maximal. It can be observed that it is the sole solution for

which the flow is supercritical everywhere. The other solutions are called submaximal. For these solutions,
the critical section is located at the contraction and it separates subcritical from supercritical flow. It can be

shown that the maximal solution is marginally stable along the entire channel, i.e., the two internal ei-

genvalues coincide.

Coming back to the numerical experiment, we consider a channel with a length of 6 meters, discretized in

150 cells, whose breadth function is given by (see Fig. 5)



Fig. 5. Sketch showing contraction plan view.
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rðxÞ ¼ 2� expð�x2Þ; x 2 ½�3; 3�;

and we consider a lock-exchange experiment: As initial state, two fluids of constant densities q1 and q2, with

r ¼ q1=q2 ¼ 0:98, are at rest and separated by a vertical ‘‘artificial barrier’’ located at the narrowest channel

section (see Fig. 6(a)). This barrier is dropped out at time t ¼ 0 and the model is integrated until a steady

state is reached (see Fig. 6(b)). At the boundaries only the ratio qr between fluxes is imposed and it is set to
1, i.e., Q1 ¼ �Q2. In this experiment CFL is set to 0.7. Fig. 6(b) shows the steady state reached which is

compared with the corresponding maximal A&F solution: Both curves can not be distinguished. The

constant exchange flux predicted by the model is Q1 ¼ �Q2 ¼ 1:111� 10�1 m3/s while F&A model gives

Q1 ¼ �Q2 ¼ 1:107� 10�1 m3/s.

Notice that the general assumption made in Section 3.1 concerning the flows to be considered in this

work is not satisfied for the maximal solution: at any point of the channel the matrix of the system has only

3 real distinct eigenvalues and thus the system is not strictly hyperbolic. In this case, the numerical scheme

has been slightly modified: when the numerical method used to solve the spectral problems finds a double
internal eigenvalue k, the matrix A is perturbed so that it has 4 real distinct eigenvalues: the two external

eigenvalues and k� e, for a given e small. Fig. 7(a) shows the internal eigenvalues along the channel for the
Fig. 6. Maximal exchange flow through a rectangular channel with a contraction. (a) Initial condition and (b) comparison with A&F

stationary solution.



Fig. 7. Internal eigenvalues of the maximal exchange flow for qr ¼ 1:0 and its representation in the Froude-number plane. (a) Internal

eigenvalues; (b) maximal solution in the Froude-number plane.
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numerical steady-state solution. It can be observed also that the solution is supercritical everywhere but

near the contraction, where two critical sections appear linked by a small subcritical region. In fact, this

small disturbance is due to the Harten�s regularization: at x ¼ 0 the internal eigenvalues take the value zero

and some numerical viscosity has to be added, otherwise the numerical solution would converge to a so-

lution presenting a non-entropic stationary shock placed at this point. The representation of this numerical

solution in the Froude-number plane is shown in Fig. 7(b).

5.3. Two-layer exchange flow through a channel with a sill and a contraction

The techniques developed by Armi and Farmer can be generalized to a channel with rectangular cross-

section whose geometry presents the combination of an offset sill and a contraction (see [16]). As in the

previous example, in this paragraph we use these ‘‘generalized A&F solutions’’ (GA&F hereafter) to val-

idate the steady-state solutions obtained with our numerical scheme.

We consider now a rectangular channel whose geometry is given by the functions (see Fig. 8).

bðxÞ ¼ 1

cosh2ð3:75xÞ
; x 2 ½�1; 2�;
rðxÞ ¼ 0:5þ 1:5ð1� e�a2ðx�1Þ2Þ; x 2 ½�1; 2�; a ¼ 0:637 if x6 1

1:273 if x > 1:


They represent a channel with a sill placed at x ¼ 0 and a contraction located at x ¼ 1 and Dx ¼ 3=200.

The experiment performed consists in taking

h1ð0; xÞ ¼ 1:3� bðxÞ;
h2ð0; xÞ ¼ 0:7;
q1ð0; xÞ ¼ q2ð0; xÞ ¼ 0;

8<:
as initial conditions and

q1ðt; 2Þ ¼ qR1 ;
q2ðt;�1Þ ¼ qL2 ; q2ðt; 2Þ ¼ qR2 ;





Fig. 8. Channel geometry: depth and breadth. (a) Channel topography and (b) channel breadth.
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as boundary conditions, where qR1 , q
L
2 and qR2 are the discharges corresponding to a given submaximal

stationary GA&F solution. The CFL parameter used in this experiment is 0.7.

Figs. 9(a) and (b) show, respectively, the initial and the final stationary states reached in the experiment

performed. In Fig. 9(b), the final state is compared with the corresponding GA&F approximate solution.
5.4. Application to the Strait of Gibraltar

In this last paragraph the model is applied to the simulation of the exchange flow through the Strait of

Gibraltar. Two numerical experiments are presented. The aim of the first one is to obtain a steady-state
solution representing the secular exchange flow through the Strait of Gibraltar when no forcing is applied.

This is done by performing a lock-exchange experiment. The goal of the second experiment is to study tidal

effects on the exchange flow and on the behaviour of the interface. This is done by taking first experiment

steady-state solution as initial condition and imposing the tidal forcing through an adequate choice of

boundary conditions. Animations corresponding to both experiments can be found at http://www.dam-

flow.org.

To perform these experiments the real geometry of the Strait is approached by constructing appropriate

breadth and bottom functions. To do so, we use bathymetric and coast line data and construct from them
an ‘‘equivalent symmetric channel’’ approximating the actual topographic characteristics of the Strait of

Gibraltar. This is done as follows: First an axis defining the Strait orientation is settled. Along this axis we

consider M ¼ 200 transversal cross-sections, Si, i ¼ 1; . . . ;M , whose areas are numerically computed. This

spatial discretization corresponds to a Dx � 600 m. The bottom depth, at each of these sections, is taken as

the maximal depth, bi, found in the bathymetric data. Finally, at each cross-section, channel breadth is

approximated by a continuous piecewise linear function constructed in such a way that the cross-section

areas are preserved. Figs. 10(a) and (b) show the bottom function and the breadth at the top of the channel

obtained by this procedure. In the figures, the Atlantic Ocean is located to the left and the Mediterranean
Sea to the right. Fig. 11 depicts the cross-sections corresponding to the shallowest (Camarinal Sill) and the

narrowest (Tarifa Narrows) sections, and to the open boundary sections corresponding to Trafalgar

C.-Spartel C. section (left) and Punta Carnero-Ceuta section (right), respectively. In Fig. 12 real

http://www.damflow.org
http://www.damflow.org


Fig. 9. Stationary solution and generalized A&F solution. (a) Initial condition and (b) stationary solution and GA&F solution.

Fig. 10. Geometry of the channel (Strait of Gibraltar). (a) Bottom topography and (b) channel breadth at surface.
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cross-sections corresponding to Camarinal Sill and Tarifa Narrows and their symmetric approximations

are compared. The location of these two sections are also marked in Fig. 10(a).

5.4.1. The secular exchange: maximal steady-state solution

The objective of this experiment is the obtaining of a steady-state solution that represents the secular

exchange in the sense of Armi and Farmer theory ([1–3,9]). This solution will also provide an initial con-

dition for further numerical experiments, here for the tidal forced simulation. To obtain this solution a

lock-exchange experiment is newly performed. Fig. 13(a) shows the initial condition: The Atlantic waters,

on the left, are separated from the Mediterranean denser waters by an artificial dam. The ratio of densities

is equal to 0.99805. Newly the relationship Q1 ¼ �Q2 is imposed at the boundaries and CFL¼ 0.5.



Fig. 11. Some relevant sections in the Strait of Gibraltar.

Fig. 12. Camarinal Sill and Tarifa Narrows sections. Real (left) and symmetric equivalent ones (right). (a) Real cross-section at

Camarinal Still; (b) symmetric equivalent section at Camarinal Still; (c) real section at Tarifa Narrows; (d) symmetric equivalent

section at Tarifa Narrows.
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Fig. 13. Lock-exchange experiment: Initial conditions and maximal stationary exchange flow reached. (a) Initial conditions; (b) free

surface and interface; (c) internal and external eigenvalues; (d) internal eigenvalues.
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Fig. 13(b) depicts the interface and free surface of the steady state reached. The discharge is

Q1 ¼ �Q2 ¼ 0:855 Sv, magnitude that agrees with some experimental data (see, for example, [6])

To analyse the nature of the flow we can look at the eigenvalues of the computed solution. Figs. 13(c)

and (d) show, respectively, the four eigenvalues and the two internal eigenvalues corresponding to the

steady-state solution along the Strait. It can be observed the presence of a subcritical region bounded by

two sections where one of the two internal eigenvalues takes the value zero. One of these sections is located

near Camarinal Sill and the other one at Tarifa Narrows. Out of this subcritical region, the two internal
eigenvalues have the same sign and therefore the flow is supercritical. In the framework of the hydraulic

theory developed by Armi and Farmer, this subcritical region is called a �control region� and the two critical

sections bounding it are called �control sections�. In the case of a channel with a simple geometry composed

by a combination of an offset sill and narrows, when a control region is present, the exchange rate is fully

defined without reference to reservoirs conditions. When this occurs, the flow regimen established is re-

ferred to as maximal exchange. When a maximal flow occurs, in the sense defined above, the exchange rate

is greatest, which motivates its name. As pointed out above, in the numerical experiment presented here the

same configuration with the presence of a control region is found for the more complex geometry of a
channel that has been considered to represent the Strait of Gibraltar. In this sense, the simulated flow

represents a maximal exchange.

If we compare Fig. 13(b) with the hypothetical steady state proposed in Armi and Farmer [3], it can be

observed that both figures agree for the location of the interface to the east of Camarinal Sill and to the

west of Spartel Sill, being the flow supercritical in both regions, but they differ in the region between these

two locations. In [3], the steady state proposed exhibits a control section placed at Spartel Sill and an

internal hydraulic jump which are not present in the computed solution. Later on, we will come back to this

discussion.
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5.4.2. Tidal simulation

In order to study the essential elements of the time dependent response in the Strait of Gibraltar to tidal

forcing, the next numerical experiment consists in a simulation of the main semidiurnal (M2 and S2) and
diurnal (O1 and K1) tidal waves in this narrows. The numerical experiment has been designed as follows:

Using the steady-state solution reached at the previous lock-exchange experiment as initial condition, the

model is integrated over 30 semidiurnal tidal cycles to achieve a stable quasi-time-periodic solution. The

model is forced at the open boundaries with boundary conditions that simulate the four main tidal com-

ponents to be considered (M2, S2, O1 and K1):

h1ðxB; tÞ þ h2ðxB; tÞ ¼ �hB �
X4

n¼1

ZnðxBÞ cosðant � /nðxBÞÞ:

Here xB represents a point of the open boundaries (left or right); ZnðxBÞ and /nðxBÞ are the prescribed

surface elevation amplitudes and phases of the nth tidal constituent at the boundary sections; an its fre-

quency, �hB the total depth of the water column corresponding to the steady-state solution at this boundary.

The M2, S2, O1 and K1 tidal elevation amplitudes, phases and frequencies used here were obtained by

interpolating the measured data at the coastal stations of Trafalgar and Spartel (on the western end) and

the coastal stations of Punta Carnero and Ceuta (on the eastern end) obtained by Garc�ıa-Lafuente et al.

[10]. Once the quasi-time-periodic regime is established, the model is integrated for another 29-day period.
Thereafter an harmonic analysis is performed on the tidal elevation over this 29-day period in order to

compare the results with the measured data provided by Garc�ıa-Lafuente et al. [10] at some relevant points.

The comparison between observed and numerical data are presented in Tables 1 and 2 where phases are

related to the M2 tide.

As it can be observed, the maximum differences do not exceed 3.0 cm (that is, about 5% in relative units)

for the M2 and S2 amplitudes and 2� for their phases. The agreement between observed and predicted tidal

constants for the O1 and K1 tidal components is not as good as for the M2 and S2 constituent. This is due,

on the one hand, to the fact that 2D effects are stronger on the O1 and K1 tidal waves, as it can be seen in
their phases chart (see [10]). Therefore, a 2D model including Coriolis effects must be used for a better

simulation of these effects. On the other hand, the diurnal tides (O1 and K1) are very sensitive to small

variations of the bottom morphology (see [20]). As a consequence, a more precise representation of the

topography would also be necessary.
Table 1

Tarifa – Punta Cires section

M2 S2 K1 O1

Obs Pred Obs Pred Obs Pred Obs Pred

Amplitude (cm) 38.94 39.88 14.13 14.85 2.73 2.16 0.84 0.87

Phase (�) 0 0 27.75 26.07 80.25 77.21 ND ND

Table 2

Punta Gracia – Punta Kankoush section

M2 S2 K1 O1

Obs Pred Obs Pred Obs Pred Obs Pred

Amplitude (cm) 57.7 55.15 21.5 20.08 3.8 1.22 2.25 3.11

Phase (�) 0 0 22.37 24.33 22.75 )16.01 262.91 198.58
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Fig. 14 shows the evolution of the free surface elevation at Tarifa Narrows given by the model during the

29-day tidal forcing experiment. Notice that, as expected, the model reproduces at this location two periods

of spring tides and other two periods of neap tides, in agreement with the boundary conditions imposed.
In Fig. 15 the free surface and the interface at twelve different stages (separated by 1 h time) of a

semidiurnal tidal cycle corresponding to a spring tide are depicted. In Fig. 16 the composite Froude number

at the same tidal stages are shown. The starting and final points of this time-series, located at the day 18 of

the simulated period, are marked with stars in Fig. 14. The sequence of figures shown here can be compared

with the essential elements of the time dependent response in the Strait of Gibraltar summarized by Armi

and Farmer [3]. We will focus on the four synopses presented by these authors, that summarized the

analysis of an extensive campaign carried out in April 1986. Nevertheless, they present a much detailed

description of the processes sketched in their schematic diagrams.
Fig. 15(b) corresponds to conditions 2 h before High Water. In order to clearly identify the nature of the

flow, Fig. 16(b) depicts the value of the composite Froude number along the Strait. The flow is controlled at

Spartel Sill (located at x ¼ �4:5� 104 in the figure). At this time of the tidal period the interface in the

Tangier Basin is rising (see Figs. 15(a)–(e) to appreciate this fact) because of the strong westward flow of

Mediterranean water over Camarinal Sill at a speed of about 1.46 m/s (in agreement with the 1.4 m/s

provided by Armi and Farmer [3]). Just west of Camarinal Sill there is a large bore matching the super-

critical flow on the western flank of the sill with the subcritical flow in Tangier Basin. The flow is newly

controlled slightly to the west of Camarinal Sill (located at x ¼ �2:3� 104 in the figure), being subcritical at
the Sill and to its east. Just west of Tarifa Narrows (x ¼ 0) the interface deepens slightly and a third control

point is found, being the flow supercritical to the east.

Figs. 15(d) and 16(d) show conditions at High Water. In this case the flow is subcritical over Spartel Sill

and over Camarinal Sill, being the controls located one slightly west of Spartel Sill, another one to the east

of Camarinal Sill. The flow is subcritical in the Tangier Basin which, at this stage of the tide period, is being

filled with Mediterranean water. This Basin continues further filling (see Fig. 15(e) corresponding to 1 h

later). At that time the small supercritical region located west of Camarinal Sill becomes subcritical and

only two control sections are present. The computed first layer water velocity obtained at Camarinal Sill
agrees with the observations of [3] (0.12 vs. 0.1 m/s), being too strong the computed velocity obtained for

the second layer (�1:18 vs. �0:7 m/s). To get model velocity values closer to the observed ones, friction

effects must be included into the numerical model. It can be observed in Figs. 15(d) and (e) (and in all the

intermediate snapshots not shown here) how the large bore that was previously formed to the west of

Camarinal Sill propagates east down the Strait towards Tarifa Narrows. Following the synopsis presented

by Armi and Farmer [3], at High Water the flow in the Strait should have just two controls: one at Spartel

West and another one at Tarifa Narrows, being the flow subcritical all along the Strait. This is not the case

for the numerical experiment presented here where the flow is controlled to the east of Camarinal Sill
Fig. 14. Simulated free surface elevation (in m) at Tarifa Narrows during the tidal forcing (29 days).





(b)(a)

(c)

(e)

(g)

(i) (j)

(l)(k)

(h)

(f)

(d)

Fig. 16. Composite Froude number (in solid line) during a semidiurnal tidal cycle at the Strait of Gibraltar. (a) t ¼ 439 h; (b) two hours

before the High Water (t ¼ 440 h); (c) t ¼ 441 h; (d) High Water (t ¼ 442 h); (e) t ¼ 443 h; (f) t ¼ 444 h; (g) t ¼ 445 h; (h) two hours

before Low Water (t ¼ 446 h); (i) t ¼ 447 h; (j) Low Water (t ¼ 448 h); (k) t ¼ 449 h; (l) t ¼ 450 h.
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remaining supercritical to the east of this control (see Figs. 15(d) and 16(d)). In the tidal cycle picked here

for its analysis and description, a situation as the one described in [3] for High Water conditions can be

found closer to Low Water (see the description for conditions 2 h before Low Water). Periods of about 1 h
wherein only two controls are present appear once per tidal cycle, for spring tides. These two controls are

located at Spartel Sill and at Tarifa Narrows, respectively, being the flow subcritical between these two

locations, as in the High Water synopsis presented by Armi and Farmer. The moment at which this situation

occurs is progressively closer to High Water as the amplitude of the tide decreases. For neap tides this

happens at High Water or at very close times.

Fig. 15(h) corresponds to conditions 2 h before Low Water. At this time of the tidal period Tangier Basin

is draining Mediterranean water (see Figs. 15(g)–(j) to make out this process). This is due to the much

higher outflowing flow of Mediterranean water through Spartel Sill than the inflowing flow through
Camarinal Sill. This could even produce a reversal of the Mediterranean flow at Camarinal Sill, as it is the

case here, where the computed velocity of the Mediterranean flow at Camarinal Sill is +0.18 m/s (vs. +0.20

measured by Armi and Farmer [3]) and )1.59 m/s at Spartel Sill (vs. �1:4 in [3]). In this case only two

controls located at Spartel Sill and at Tarifa Narrows, respectively, are present (see Fig. 16(h)). The flow is

subcritical between these two locations and supercritical outside this control region.

Fig. 15(j) shows conditions at Low Water. The flow is controlled to the east of Spartel Sill (see Fig. 16(j)).

The Mediterranean flow continues outflowing at this location at a high rate (at a velocity between �2:14
and �1:79 m/s, depending on the location), which made the progressive lowering of the interface up to this
stage of the tidal period. But is at this point of the tidal period where Tangier Basin stops draining

Mediterranean water: Although the outflowing rate at Spartel is high, the Mediterranean water coming into

the Tangier Basin through Camarinal Sill do so as a highly supercritical flow that compensates the lose

through Spartel. The highly supercritical Mediterranean input flow through Camarinal produces, in its

turn, the formation of a large bore (see also subsequent figures to appreciate the growing of the bore) that

connects the supercritical region formed as consequence of the strong Mediterranean flow with the sub-

critical region located in the western part of the Tangier Basin. The bore is progressively growing and

moving westwards the Tangier Basin (see Figs. 15(j)–(l)). The mechanism just described produces the filling
of the Tanger Basin with Mediterranean water, reversing the former draining conditions. The flow ve-

locities computed by the model at Spartel Sill and Camarinal Sill are �1:79 m/s (vs. �1:8 m/s measured by

Armi and Farmer [3]) and �1:53 (vs. �1:2 m/s), respectively, at these two locations. Nevertheless, it must be

pointed out the large fluctuations in the magnitude of the velocities in such a critical point as Camarinal

Sill. As example, in this case, the computed velocities for the Mediterranean flow were of �2:25, �1:53 and

�0:95 m/s at three close locations: slightly west of the sill, at the sill, and slightly east of the sill, respectively.

At this stage of the tide, the Atlantic flow is reversed over Camarinal Sill (the computed velocity is �0:67 vs.
�0:5 m/s measured by Armi and Farmer [3]), as the large pool of Atlantic water in the subcritical portion
between Camarinal Sill and Tarifa Narrows (see Fig. 15(i) 1 h before) spreads out both to east and west. A

new control appears when the interface rises east of Tarifa Narrows being the flow supercritical to the east

of the control.

Through the simulation it can be observed that Tangier Basin acts as a reservoir that fills and drains on

each tidal cycle. The brief description of the process is as follows: At spring tides about 1 h after High

Water, when Tangier Basin has been filling and the interface there has raised, the moving control close to

Camarinal Sill is lost. This happens for about 1 h. For neap tides this occurs closer or at High Water

conditions and the lose control situation lasts longer, for about 3 h. Then, the Tangier Basin starts draining,
first due to the reversal of the Mediterranean flow at Camarinal Sill (Figs. 15(f)–(h)) and later on for a

larger Mediterranean outflowing flow through Spartel Sill than the incoming flow though Camarinal Sill

(Fig. 15(i)) this makes the interface to drop below the interface level east of Camarinal Sill. The large

amount of Mediterranean water incoming through Spartel Sill makes that the moving control close to

Camarinal Sill is re-established. Meanwhile, the interface behaves in a complex manner (this can be



observed plotting more intermediate snapshots or making an animation of the simulation). About 1 h

before LowWater, the increasingly larger and progressively more supercritical flow of Mediterranean water

entering through Camarinal Sill into the Tangier Basin initiates the formation of a bore west of Camarinal
Sill. The bore initially grows up to occupy half of the Tangier Basin, remaining there for about half of the

tidal cycle when a new refilling of the basin makes the bore move eastwards and latter, when the control is

again lost in a new tidal cycle, makes it dissappear propagating east of the sill.

East of Camarinal Sill, between the sill and the contraction, there is another fluctuating reservoir of

water. In this case it is the Atlantic water that fills or drains from this reservoir of the Strait. Just as Tangier

Basin can drain from both ends on a falling tide, so does the pool of Atlantic water east of Camarinal drain

from both ends, west over Camarinal Sill and east through Tarifa Narrows, on a rising tide.

To conclude our analysis, we come back to the hypothetical steady state representation of the Medi-
terranean and Atlantic water interface proposed by Armi and Farmer [3]. To interpret this representation,

we have computed the mean location of the interface during the 29-day tidal forcing simulation presented

above. Fig. 17 depicts the mean interface. The agreement between the mean interface of the tidal simulation

presented here and the hypothetical steady state proposed by Armi and Farmer is good along all the Strait in

contrast with the maximal steady-exchange solution. It should be observed that this mean state is not a

solution of the numerical model, as this it is not linear. As a consequence, even if the model is initialized

with a maximal steady-state solution, as is was done here, once a tidal forcing is applied, the time dependent

solution turns around a �mean state� that presents the main features predicted in [3]. The mean values of the
discharges averaged over the 29-day tidal forcing simulation are of 1.0923 Sv for the first layer and of

�1:0327 Sv for the second layer. Observe that these values are larger than the ones obtained for the

maximal exchange solution with qr ¼ 1 that were Q1 ¼ �Q2 ¼ 0:855 Sv. Even if the tidal simulation were

initialized from a maximal solution with qr ¼ 1:0, through the tidal cycle the mean Atlantic flow becomes

larger than the mean Mediterranean flow. Therefore if other effects, such as evaporation, were not present

the Mediterranean Sea would finally be filled with Atlantic water. Notice, that the structure of the maximal

exchange solution previously computed is lost when the tidal forcing is introduced. All along the tidal

simulation the supercritical nature of the flow at both bounding ends of the Strait is always preserved, but
the flow that connects these two supercritical regions is highly time-dependent and the behaviour of the

interface is complex. Bores develop and the control at Camarinal Sill is periodically lost. From a qualitative

point of view, the model solution agrees well with the observations and analysis performed by Armi and

Farmer [3].



234 M.J. Castro et al. / Journal of Computational Physics 195 (2004) 202–235
6. Conclusions

In this work, a formulation of the two layer Shallow Water Equations for channels with irregular ge-
ometry under the form of two coupled systems of conservation laws with source terms have been derived

and a generalized Q-scheme for solving the system with a suitable treatment of the coupling and source

terms has been proposed. The particular expressions for the generalized Q-schemes of Roe and Van Leer

have also been provided. The extension of the enhanced consistency condition introduced in [4] to the

proposed numerical schemes has been done, and a result that gives some conditions to ensure that a

generalized Q-scheme satisfies this property has been proved. It has been also checked that this property is

satisfied in practice and that no spurious waves appear as consequence of the discretization of the source

terms.
Model performance has been assessed by comparing the numerical results with the analytical solutions

provided by Armi and Farmer for channels with rectangular cross-sections and simple geometries. We have

also been able to properly simulate maximal exchange solutions by solving the classical lock exchange

problem without adding any viscous term in the mathematical model as it is common practice when dealing

with this problem.

Finally, the model has been used to simulate the flow exchange through the Strait of Gibraltar. To do so,

an equivalent symmetric channel approaching the real geometry of the Strait has been constructed and a

steady-state solution has been computed starting from lock-exchange initial conditions. This solution, that
represents the secular exchange through the Strait, presents the main features predicted by the hydraulic

theory developed by Armi and Farmer. Moreover, the discharge obtained agrees quite closely with ex-

perimental measurements. Next, the main semidiurnal and diurnal tidal waves in the Strait of Gibraltar

have been simulated by imposing the effect of the tides through the boundary conditions at the two open

boundaries. In despite of the simplifications of the model (mainly due to its one-dimensional character), the

agreement with measurements (at least for the semidiurnal tides) is quite good. The development of internal

bores travelling westward and eastward are well simulated. The numerical experiment presented here has

revealed a complicated pattern of time dependent hydraulics fluctuations involving changing interfacial
levels and moving control points at different stages of the tide, being these patterns in good agreement with

the analysis of observed data performed in [3]. Therefore, these results seems to confirm that this approach

is well suited for oceanographical purposes and, in particular, for a realistic simulation of flows through the

Strait of Gibraltar.
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